
Induction and Inductance 

 

A current produces a magnetic field. 

That fact came as a surprise to the scientists who discovered the effect. 

Perhaps even more surprising was the discovery of the reverse effect: 

A magnetic field can produce an electric field that can drive a current.  

This link between a magnetic field and the electric field it produces (induces) is now called 

Faraday’s law of induction. 

Two simple experiments about Faraday’s law of induction. 

 

Figure 1.  Shows a conducting loop connected to a sensitive ammeter. 

Because there is no battery or other source of emf included, there is no current in the circuit. 

However, if we move a bar magnet toward the loop, a current suddenly appears in the circuit. 

The current disappears when the magnet stops. 

 If we then move the magnet away, a current again suddenly appears, but now in the opposite 

direction. 

 

  



1. A current appears only if there is relative motion between the loop and the magnet; the current 

disappears when the relative motion between them ceases. 

2. Faster motion produces a greater current. 

3. If moving the magnet’s north pole toward the loop causes, say, clockwise current, then 

moving the north pole away causes counterclockwise current. 

Moving the South Pole toward or away from the loop also causes currents, but in the reversed 

directions. 

The current produced in the loop is called an induced current; the work done per unit charge to 

produce that current (to move the conduction electrons that constitute the current) is called an 

induced emf; and the process of producing the current and emf is called induction. 

Experiment  2 

When the switch is open (no current), there are no field lines.  

However, when we turn on the current in the right-hand loop, the increasing current builds up a 

magnetic field around that loop and at the left-hand loop. 

While the field builds, the number of magnetic field lines through the left-hand loop increases. 

So, the increase in field lines through that loop apparently induces a current and an emf there. 

When the current in the right-hand loop reaches a final, steady value, the number of field lines 

through the left-hand loop no longer changes, and the induced current and induced emf 

disappear.                        

 



30.3 Faraday’s Law of Induction 

 

Faraday realized that an emf and a current can be induced in a loop, by changing the amount of 

magnetic field passing through the loop. 

An emf is induced in the loop when the number of magnetic field lines that pass through the loop 

is changing. 

The actual number of field lines passing through the loop does not matter; the values of the 

induced emf and induced current are determined by the rate at which that number changes. 

In first experiment, as we move the north pole closer to the loop, the number of field lines 

passing through the loop increases. 

That increase apparently causes conduction electrons in the loop to move (the induced current) 

and provides energy (the induced emf) for their motion. 

When the magnet stops moving, the number of field lines through the loop no longer changes 

and the induced current and induced emf disappear. 

In second experiment, when the switch is open (no current), there are no field lines.  

However, when we turn on the current in the right-hand loop, the increasing current builds up a 

magnetic field around that loop and at the left-hand loop. 

While the field builds, the number of magnetic field lines through the left-hand loop increases. 

As in the first experiment, the increase in field lines through that loop apparently induces a 

current and an emf there. 

When the current in the right-hand loop reaches a final, steady value, the number of field lines 

through the left-hand loop no longer changes, and the induced current and induced emf 

disappear. 

 



Quantitative treatment: 

To calculate the amount of magnetic field that passes through a loop. 

Magnetic flux: Suppose a loop enclosing an area A is placed in a magnetic field .Then the 

magnetic flux through the loop is 

 

dA is a vector of magnitude dA that is perpendicular to a differential area dA. 

 

Suppose that the magnetic field is perpendicular to the plane of the loop. 

So the dot product in B dA cos 0° =  B dA.  

If the magnetic field is also uniform, then B can be brought out in front of the integral sign. 

The remaining A  then gives just the area A of the loop. Thus, Eq. 30-1 reduces to 

 

 

The SI unit for magnetic flux is the tesla–square meter, which is called the weber ( Wb) 

 

 

The magnitude of the emf  (  ) induced in a conducting loop is equal to the rate at which the 

magnetic flux (    ) through that loop changes with time. 

The induced emf  (   ) tends to oppose the flux change, so Faraday’s law is formally written as 

  

 

 the minus sign indicating that opposition. We often neglect the minus sign, seeking only the 

magnitude of the induced emf. 



The total emf induced in the coil of N turns 

 

Here are the general means by which we can change the magnetic flux through a coil: 

1. Change the magnitude B of the magnetic field within the coil. 

2. Change either the total area of the coil or the portion of that area that lies within the magnetic 

field (for example, by expanding the coil or sliding it into or out of the field). 

3. Change the angle between the direction of the magnetic field and the plane of the coil (for 

example, by rotating the coil so that field is first perpendicular to the plane of the coil and then is 

along that plane) 

 

30.4 Lenz’s Law 

Lenz's law, named after the physicist Emil Lenz , formulated it in 1834 

The direction of the current induced in a conductor by a changing magnetic field (as per 

Faraday’s law of electromagnetic induction) is such that the magnetic field created by the 

induced current opposes the initial changing magnetic field which produced it. 

An induced current has a direction such that the magnetic field due to the current opposes the 

change in the magnetic flux that induces the current. 

  

 

Figure shows Lenz’s law at work. As the magnet is moved 

toward the loop, a current is induced in the loop. The current 

produces its own magnetic field, with magnetic dipole 

moment oriented so as to oppose the motion of the magnet. 

Thus, the induced current must be counterclockwise as 

shown. 
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To get a feel for Lenz’s law, let us apply it in two different but equivalent ways 

 

1. Opposition to Pole Movement.  

The approach of the magnet’s north pole in Fig. 30-4 increases the magnetic flux through the 

loop and thereby induces a current in the loop. 

We studied in ch. 29 that the loop then acts as a magnetic dipole with a south pole and a north 

pole, and that its magnetic dipole moment 


is directed from south to north.  

To oppose the magnetic flux increase being caused by the approaching magnet, the loop’s north 

pole (and thus) must face toward the approaching north pole so as to repel it (Fig). 

Then the curled–straight right-hand rule for 


 (in Ch. 29) tells us that the current induced in the 

loop must be counterclockwise as shown in Fig.  

If we next pull the magnet away from the loop, a current will again be induced in the loop. Now, 

however, the loop will have a south pole facing the retreating north pole of the magnet, so as to 

oppose the retreat. Thus, the induced current will be clockwise. 

 

2. Opposition to Flux Change.  

In Fig. , with the magnet initially distant, no magnetic flux passes through the loop. As the north 

pole of the magnet then nears the loop with its magnetic field B


directed downward, the flux 

through the loop increases. 

To oppose this increase in flux, the induced current i must set up its own field Bind


directed 

upward inside the loop, as shown in Fig. 30-5a; then the upward flux of field Bind


opposes the 

increasing downward flux of field B


. 



The curled–straight right-hand rule of Fig. 29-21 then tells us that i must be counterclockwise in 

Fig. 30-5a. 

 

Note carefully that the flux of Bind


always opposes the change in the flux of B


, but that does not 

always mean that Bind


 points opposite B


. 

For example, if we next pull the magnet away from the loop in Fig. 30-4, the flux ɸB from the 

magnet is still directed downward through the loop, but it is now decreasing.  

The flux of Bind


must now be downward inside the loop, to oppose the decrease in ɸB, as shown 

in Fig. 30-5b.Thus, Bind


and B


are now in the same direction. 

In Figs. 30-5c and d, the south pole of the magnet approaches and retreats from the loop, 

respectively.             



 

The direction of the current i induced in a loop is such that the current’s magnetic field Bind



opposes the change in the magnetic field B inducing i. The field Bind


is always directed opposite 

an increasing field B (a,c) and in the same direction as a decreasing field B .The curled - straight 

right-hand rule gives the direction of the induced current based on the direction of the induced 

field. 

 

  

  



30.5  Induction and Energy Transfers 

By Lenz’s law, whether you move the magnet toward or away from the loop in Fig. 30-1, a 

magnetic force resists the motion, requiring your applied force to do positive work. 

At the same time, thermal energy is produced in the material of the loop because of the 

material’s electrical resistance to the current that is induced by the motion. 

The energy you transfer to the closed loop + magnet system via your applied force ends up in 

this thermal energy. (For now, we neglect energy that is radiated away from the loop as 

electromagnetic waves during the induction.)  

The faster you move the magnet, the more rapidly your applied force does work and the greater 

the rate at which your energy is transferred to thermal energy in the loop; that is, the power of the 

transfer is greater. 

 

Regardless of how current is induced in a loop, energy is always transferred to thermal energy 

during the process because of the electrical resistance of the loop (unless the loop is 

superconducting).  

 

  

In this fig., you pull a closed conducting 

loop out of a magnetic field at constant 

velocity. While the loop is moving, a 

clockwise current i is induced in the 

loop, and the loop segments still within 

the magnetic field experience forces F1, 

F2 , and F3 . 



Figure shows another situation involving induced current. A rectangular loop of wire of width L 

has one end in a uniform external magnetic field that is directed perpendicularly into the plane of 

the loop. This field may be produced, for example, by a large electromagnet. The dashed lines in 

Fig. shows the assumed limits of the magnetic field; the fringing of the field at its edges is 

neglected. You are to pull this loop to the right at a constant velocity. 

 

The situation of Fig. 30-8 does not differ in any essential way from that of Fig. 30-1. 

In each case a magnetic field and a conducting loop are in relative motion; in each case the flux 

of the field through the loop is changing with time. 

It is true that in Fig. 30-1 the flux is changing because B is changing and in Fig. 30-8 the flux is 

changing because the area of the loop still in the magnetic field is changing, but that difference is 

not important. 

The important difference between the two arrangements is that the arrangement of Fig. 30-8 

makes calculations easier. Let us now calculate the rate at which you do mechanical work as you 

pull steadily on the loop in Fig. 30-8. 

As you will see, to pull the loop at a constant velocity, you must apply a constant force F to the 

loop because a magnetic force of equal magnitude but opposite direction acts on the loop to 

oppose you.  

P = FV 

where F is the magnitude of your force. We wish to find an expression for P in terms of the 

magnitude B of the magnetic field and the characteristics of the loop - namely, its resistance R to 

current and its dimension L. 

 



The magnitude of the flux through the loop is 

 

 

As x decreases, the flux decreases. Faraday’s law tells us that with this flux decrease, an emf is 

induced in the loop. Dropping the minus sign and using above Eq., we can write the magnitude 

of this emf as 

 

In which we have replaced dx/dt with v, the speed at which the loop moves 

 

Figure 30-9 shows the loop as a circuit: induced emf ɛ is represented on the left, and the 

collective resistance R of the loop is represented on the right.  

 

The direction of the induced current i is obtained with a right-hand rule as in Fig. 30-5b for 

decreasing flux; applying the rule tells us that the current must be clockwise, and ɛ must have the 

same direction. 

To find the magnitude of the induced current, we cannot apply the loop rule for potential 

differences in a circuit because, as you will see in next Section, we cannot define a potential 

difference for an induced emf.  



However, we can apply the equation 
R

i


  . The above eq. becomes 

 
R

BLv
i   

There are three segments of the loop in Fig. 30-8 carry this current through the magnetic field, 

sideways deflecting forces act on those segments. Deflecting force on conductor carrying current 

in general notation, 

 BLiFd


  

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are marked F1, F2 and 

F3. Note, however, that from the symmetry, forces F2 and F3 are equal in magnitude and cancel. 

This leaves only force F1, which is directed opposite your force F on the loop and thus is the 

force opposing you. So, F = - F1 

To obtain the magnitude of F1 and noting that the angle between B and L the length vector for the 

left segment is 90°, we write 

 

iLBiLBF F  90sin
1

 

R
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F
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  

Because B, L, and R are constants, the speed v at which you move the loop is constant if the 

magnitude F of the force you apply to the loop is also constant 

 

R
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Thermal energy appears in the loop 
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Thus, the work that you do in pulling the loop through the magnetic field appears as thermal 

energy in the loop. 

 

Eddy Currents 

Suppose we replace the conducting loop of Fig. with a solid conducting plate. 

If we then move the plate out of the magnetic field as we did the loop (Fig. a), the relative 

motion of the field and the conductor again induces a current in the conductor.  

Thus, we again encounter an opposing force and must do work because of the induced current. 

With the plate, however, the conduction electrons making up the induced current do not follow 

one path as they do with the loop. 

Instead, the electrons swirl about within the plate as if they were caught in an eddy (whirlpool) 

of water. Such a current is called an eddy current and can be represented, as it is in Fig. 10a, as if 

it followed a single path. 

As with the conducting loop of rectangular coil, the current induced in the plate results in 

mechanical energy being dissipated as thermal energy. 

The dissipation is more apparent in the arrangement of Fig. b; a conducting plate, free to rotate 

about a pivot, is allowed to swing down through a magnetic field like a pendulum.  

Each time the plate enters and leaves the field, a portion of its mechanical energy is transferred to 

its thermal energy. After several swings, no mechanical energy remains and the warmed-up plate 

just hangs from its pivot. 



 

Fig. 30-10 (a) As you pull a solid conducting plate out of a magnetic field, eddycurrents are 

induced in the plate.A typical loop of eddy current is shown. 

(b) A conducting plate is allowed to swing like a pendulum about a pivot and into a region of 

magnetic field.As it enters and leaves the field, eddy currents are induced in the plate. 

 

30.6 Induced Electric Fields 

 

Let us place a copper ring of radius r in a uniform external magnetic field, as in Fig. 30-11a.  

The field - neglecting fringing - fills a cylindrical volume of radius R. 

Suppose that we increase the strength of this field at a steady rate, perhaps by increasing - in an 

appropriate way - the current in the windings of the electromagnet that produces the field. 

The magnetic flux through the ring will then change at a steady rate and - by Faraday’s law - an 

induced emf and thus an induced current will appear in the ring. 

From Lenz’s law we can deduce that the direction of the induced current is counterclockwise in 

Fig. 30-11a. 

 

(a) If the magnetic field increases at a steady rate, a constant 

induced current appears, as shown, in the copper ring of radius 

r. 
 



If there is a current in the copper ring, an electric field must be present along the ring because an 

electric field is needed to do the work of moving the conduction electrons. Moreover, the electric 

field must have been produced by the changing magnetic flux .This induced electric field E is 

just as real as an electric field produced by static charges; either field will exert a force q0E on a 

particle of charge q0. 

 

A changing magnetic field produces an electric field. 

 

To fix these ideas, consider Fig. b, which is just like Fig. (a) except the copper ring has been 

replaced by a hypothetical circular path of radius r. 

We assume, as previously, that the magnetic field is increasing in magnitude at a constant rate 

dB/dt.  

The electric field induced at various points around the circular path must - from the symmetry - 

be tangent to the circle, as Fig. (b) Shows. 

Hence, the circular path is an electric field line. There is nothing special about the circle of radius 

r, so the electric field lines produced by the changing magnetic field must be a set of concentric 

circles, as in Fig. c. 

 

 

(b) An induced electric field exists even when the ring is removed; the electric field is shown at four points. 

 (c) The complete picture of the induced electric field, displayed as field lines.  



As long as the magnetic field is increasing with time, the electric field represented by the circular 

field lines in Fig. 30-11c will be present. If the magnetic field remains constant with time, there 

will be no induced electric field and thus no electric field lines. If the magnetic field is ecreasing 

with time (at a constant rate), the electric field lines will still be concentric circles as in Fig. c, 

but they will now have the opposite direction. All this is what we have in mind when we say “A 

changing magnetic field produces an electric field.” 

 

 

 

 

 

 

 

 

  

  

(d) Four similar closed paths that enclose identical areas. Equal emfs are induced around paths 1 and 

2, which lie entirely within the region of changing magnetic field.A smaller emf is induced around 

path 3, which only partially lies in that region. No net emf is induced around path 4, which lies 

entirely outside the magnetic field. 



A Reformulation of Faraday’s Law 

Consider a particle of charge q0 moving around the circular path of Fig. bas shown above. 

The work W done on it in one revolution by the induced electric field is qw
0

  (v=w/q0) 

that is, the work done per unit charge in moving the test charge around the path. 

 From another point of view, the work is 

    1 

where q0E is the magnitude of the force acting on the test charge and 2pr is the distance over 

which that force acts. Setting these two expressions for W equal to each other and canceling q0, 

we find that  

        2 

 

Next we rewrite Eq. 1 to give a more general expression for the work done on a particle of 

charge q0 moving along any closed path: 

    3 

(The loop on each integral sign indicates that the integral is to be taken around the closed path.) 

Substituting q0 for W, we find that 

 

     4 

 

This integral reduces at once to Eq. 2 if we evaluate it for the special case of Fig. b. 

 



With Eq. 4, we can expand the meaning of induced emf. 

Up to this point, induced emf has meant the work per unit charge done in maintaining current 

due to a changing magnetic flux, or it has meant the work done per unit charge on a charged 

particle that moves around a closed path in a changing magnetic flux. 

However, with Fig. b and Eq. 4, an induced emf can exist without the need of a current or 

particle: An induced emf is the sum - via integration - of quantities  around a closed path, 

where  is the electric field induced by a changing magnetic flux and is a differential length 

vector along the path. 

If we combine Eq. 4 with Faraday’s law (ɛ = - dɸB/dt), we can rewrite Faraday’s law as 

    5 

This equation says simply that a changing magnetic field induces an electric field. 

The changing magnetic field appears on the right side of this equation, the electric field on the 

left.  

Faraday’s law in the form of Eq. 5 can be applied to any closed path that can be drawn in a 

changing magnetic field. Figure d, for example, shows four such paths, all having the same shape 

and area but located in different positions in the changing field. 

The induced emfs for paths 1 and 2 are equalbecause these paths lie entirely in 

the magnetic field and thus have the same value of dɸB/dt.  

This is true even though the electric field vectors at points along these paths are different, as 

indicated by the patterns of electric field lines in the figure. For path 3 the induced emf is smaller 

because the enclosed flux ɸB (hence dɸB/dt) is smaller, and for path 4 the induced emf is zero 

even though the electric field is not zero at any point on the path. 

 



A New Look at Electric Potential 

 

Induced electric fields are produced not by static charges but by a changing magnetic flux. 

Although electric fields produced in either way exert forces on charged particles, there is an 

important difference between them.  

The simplest evidence of this difference is that the field lines of induced electric fields form 

closed loops, as in Fig. c. Field lines produced by static charges never do so but must start on 

positive charges and end on negative charges. 

In a more formal sense, we can state the difference between electric fields produced by induction 

and those produced by static charges in these words: 

Electric potential has meaning only for electric fields that are produced by static charges; it 

has no meaning for electric fields that are produced by induction. 

Recall previous equation of potential difference between two points i and f in an electric field 

 

 

If i and f in above Eq. are the same point, the path connecting them is a closed loop, Vi and Vf 

are identical, and above Eq. reduces to 

 

  

 

However, when a changing magnetic flux is present, this integral is not zero but is -dɸB/dt, as 

above Eq. asserts. Thus, assigning electric potential to an induced electric field leads us to a 

contradiction. We must conclude that electric potential has no meaning for electric fields 

associated with induction. 

 



30.7 Inductors and Inductance 

 

We found that a capacitor can be used to produce a desired electric field. We considered the 

parallel-plate arrangement as a basic type of capacitor. 

Similarly, an inductor can be used to produce a desired magnetic field. We shall consider a long 

solenoid (more specifically, a short length near the middle of a long solenoid) as our basic type 

of inductor. 

If we establish a current i in the windings (turns) of the solenoid we are taking as our inductor, 

the current produces a magnetic flux ɸB through the central region of the inductor. The 

inductance of the inductor is then 

 

N is the number of turns. 

The windings of the inductor are said to be linked by the shared flux, and the product NɸB is 

called the magnetic flux linkage. 

The inductance L is thus a measure of the flux linkage produced by the inductor per unit of   

current. 

Because the SI unit of magnetic flux is the tesla–square meter, the SI unit of inductance is the 

tesla - square meter per ampere (T-m
2
/A). We call this the henry (H), after American physicist 

Joseph Henry, the codiscoverer of the law of induction and a contemporary of Faraday. Thus, 

 

1 henry = 1 H = 1 T-m
2
/A 

 

Through the rest of this chapter we assume that all inductors, no matter what their geometric 

arrangement, have no magnetic materials such as iron in their vicinity. Such materials would 

distort the magnetic field of an inductor. 

 

 



Inductance of a Solenoid 

 

Consider a long solenoid of cross-sectional area A. What is the inductance per unit length near its 

middle?  

We must calculate the flux linkage set up by a given current in the solenoid windings. 

Consider a length l near the middle of this solenoid. The flux linkage there is 

 

 

 n =  number of turns per unit length of the solenoid  

B = magnitude of the magnetic field within the solenoid. 

The magnitude B is  

 

So  

 

Thus, the inductance per unit length near the center of a long solenoid is 

 

Inductance - like capacitance - depends only on the geometry of the device. 

The dependence on the square of the number of turns per unit length is to be expected.  

If you, say, triple n, you not only triple the number of turns (N) but you also triple the flux (ɸB = 

BA = μ˳i nA) through each turn, multiplying the flux linkage N ɸB and thus the inductance L by 

a factor of 9.   

If the solenoid is very much longer than its radius, then above Eq. gives its inductance to a good 

approximation. This approximation neglects the spreading of the magnetic field lines near the 



ends of the solenoid, just as the parallel-plate capacitor formula (C = ɛ˳A/d) neglects the fringing 

of the electric field lines near the edges of the capacitor plates. 

n is a number per unit length, we can see that an inductance can be written as a product of the 

permeability constant μ˳ and a quantity with the dimensions of a length. This means that μ˳can 

be expressed in the unit henry per meter: 

 

  

 

 

30.8 Self-Induction 

 

If two coils—which we can now call inductors - are near each other, a current i in one coil 

produces a magnetic flux ɸB through the second coil. We have seen that if we change this flux by 

changing the current, an induced emf appears in the second coil according to Faraday’s law. An 

induced emf appears in the first coil as well. 

An induced emf ɛL appears in any coil in which the current is changing. 

 

  

 

This process (see Fig. 30-13) is called self-induction, and the emf that appears is called a self-

induced emf. It obeys Faraday’s law of induction just as other induced emfs do. 

For any inductor, we can write that  

     1 

Fig. 30-13 If the current in a coil is changed by varying the 

contact position on a variable resistor, a self-induced emf ɛL 

will appear in the coil while the current is changing. 



Faraday’s law tells us that   

   2 

By combining Eqs. 1 & 2 

    3 

The magnitude of the current has no influence on the magnitude of the induced emf; only the rate 

of change of the current counts. 

You can find the direction of a self-induced emf from Lenz’s law. The minus sign in Eq. 3 

indicates that - as the law states - the self-induced emf  has the orientation such that it 

opposes the change in current i. We can drop the minus sign when we want only the magnitude 

of . 

Suppose that, as in below Fig. a, you set up a current i in a coil and arrange to have the current 

increase with time at a rate di/dt. In the language of Lenz’s law, this increase in the current is the 

“change” that the self-induction must oppose. For such opposition to occur, a self-induced emf 

must appear in the coil, pointing - as the figure shows - so as to oppose the increase in the 

current. If you cause the current to decrease with time, as in Fig. b, the self-induced emf must 

point in a direction that tends to oppose the decrease in the current, as the figure shows. In both 

cases, the emf attempts to maintain the initial condition. 

 

 

                              

 



We cannot define an electric potential for an electric field (and thus for an emf) that is induced 

by a changing magnetic flux. 

This means that when a self-induced emf is produced in the inductor of Fig. 30-13, we cannot 

define an electric potential within the inductor itself, where the flux is changing. However, 

potentials can still be defined at points of the circuit that are not within the inductor - points 

where the electric fields are due to charge distributions and their associated electric potentials. 

Moreover, we can define a self-induced potential difference VL across an inductor (between its 

terminals, which we assume to be outside the region of changing flux). For an ideal inductor (its 

wire has negligible resistance), the magnitude of VL is equal to the magnitude of the self-induced 

emf ɛL. 

If, instead, the wire in the inductor has resistance r, we mentally separate the inductor into a 

resistance r (which we take to be outside the region of changing flux) and an ideal inductor of 

self-induced emf ɛL. As with a real battery of emf ɛ and internal resistance r, the potential 

difference across the terminals of a real inductor then differs from the emf. Unless otherwise 

indicated, we assume here that inductors are ideal. 

 

30-9 

RL Circuits 

If we suddenly introduce an emf ɛ into a single-loop circuit containing a resistor R and a 

capacitor C, the charge on the capacitor does not build up immediately to its final equilibrium 

value Cɛ but approaches it in an exponential fashion 

  

The rate at which the charge builds up is determined by the capacitive time constant  c
 

 

If we suddenly remove the emf from this same circuit, the charge does not immediately fall to 

zero but approaches zero in an exponential fashion 

  

 The time constant  c
 describes the fall of the charge as well as its rise. 



An analogous slowing of the rise (or fall) of the current occurs if we introduce an emf ɛ into (or 

remove it from) a single-loop circuit containing a resistor R and an inductor L.  

When the switch S in Fig. 30-15 is closed on a, for example, the current in the resistor starts to 

rise. If the inductor were not present, the current would rise rapidly to a steady value ɛ/R. 

Because of the inductor, however, a selfinduced emf ɛL appears in the circuit; from Lenz’s law, 

this emf opposes the rise of the current, which means that it opposes the battery emf ɛ in polarity. 

Thus, the current in the resistor responds to the difference between two emfs, a constant ɛ due to 

the battery and a variable ɛL (= -L di/dt) due to self-induction. As long as ɛL is present, the 

current will be less than ɛ/R. 

 

        

Fig. 30-15  An RL circuit. When switch S is closed on a,  

the current rises and approaches a limiting value ɛ/R. 

 

As time goes on, the rate at which the current increases becomes less rapid and the magnitude of 

the self-induced emf, which is proportional to di/dt, becomes smaller. Thus, the current in the 

circuit approaches ɛ/R asymptotically. 

Initially, an inductor acts to oppose changes in the current through it. A long time later, it acts 

like ordinary connecting wire. 

         

With the switch S in Fig. 30-15 thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us 

apply the loop rule, starting at point x in this figure and moving clockwise around the loop along 

with current i. 



1. Resistor. Because we move through the resistor in the direction of current i, the electric 

potential decreases by iR. Thus, as we move from point x to point y, we encounter a 

potential change of -iR. 

2. Inductor. Because current i is changing, there is a self-induced emf ɛL in the inductor. The 

magnitude of ɛL is given as L di/dt. The direction of ɛL is upward in Fig. 30-16 because 

current i is downward through the inductor and increasing. Thus, as we move from point 

y to point z, opposite the direction of ɛL,we encounter a potential change of -L di/dt. 

3.  Battery. As we move from point z back to starting point x, we encounter a potential 

change of +ɛ due to the battery’s emf. 

Thus, the loop rule gives us 

 

  

 

Equation 1 is a differential equation involving the variable i and its first derivative di/dt. 

To solve it, we seek the function i(t) such that when i(t) and its first derivative are substituted in 

Eq. 1, the equation is satisfied and the initial condition i(0) " 0 is satisfied. 

Equation 1 and its initial condition are of exactly the form of Eq. 27-32 for an RC circuit, with i 

replacing q, L replacing R, and R replacing 1/C. The solution of Eq. 1 must then be of exactly the 

form of Eq. 27-33 with the same replacements. 

That solution is 

 

We can write    



The inductive time constant, is given by 

 

Let’s examine Eq. 3 for just after the switch is closed (at time t = 0) and for a time long after the 

switch is closed (t   ). If we substitute t = 0 into Eq.3, the exponential becomes e
-0

 = 1.Thus, Eq. 

3 tells us that the current is initially i = 0, as we expected. Next, if we let t go to , then the 

exponential goes to e
-

 = 0. Thus, Eq. 3 tells us that the current goes to its equilibrium value of 

ɛ/R. 

 

We can also examine the potential differences in the circuit. For example, Fig. 30-17 shows how 

the potential differences VR (= iR) across the resistor and VL (= L di/dt) across the inductor vary 

with time for particular values of ɛ, L, and R. Compare this figure carefully with the 

corresponding figure for an RC circuit (Fig. 27-16).  

 

               

 

 

To show that the quantity  L
(= L/R) has the dimension of time, we convert from henries per 

ohm as follows:  

 

 

 



 

 

 

 

  

  



30-10 Energy Stored in a Magnetic Field 

When we pull two charged particles of opposite signs away from each other, we say that the 

resulting electric potential energy is stored in the electric field of the particles. 

We get it back from the field by letting the particles move closer together again. In the same way 

we say energy is stored in a magnetic field, but now we deal with current instead of electric 

charges. 

To derive a quantitative expression for that stored energy, consider again Fig. 30-16, which 

shows a source of emf ɛ connected to a resistor R and an inductor L. Equation 30-39, restated 

here for convenience, 

 

 

 

Multiply each side by i, we obtain 

 

Which has the following physical interpretation in terms of the work done by the battery and the 

resulting energy transfers:  

1. If a differential amount of charge dq passes through the battery of emf ɛ in Fig. above in 

time dt, the battery does work on it in the amount ɛdq. The rate at which the battery does 

work is (ɛ dq)/dt, or ɛ i.  Thus, the left side of Eq. 2 represents the rate at which the emf 

device delivers energy to the rest of the circuit. 

2.  The rightmost term in Eq. 2 represents the rate at which energy appears as thermal energy 

in the resistor. 



3. Energy that is delivered to the circuit but does not appear as thermal energy must, by the 

conservation-of-energy hypothesis, be stored in the magnetic field of the inductor. Because 

Eq. 2 represents the principle of conservation of energy for RL circuits, the middle term must 

represent the rate dUB/dt at which magnetic potential energy UB is stored in the magnetic 

field. 

Thus 

 

We can write this as 

 

 Integrating yields  

 

 

 

which represents the total energy stored by an inductor L carrying a current i. Note the similarity 

in form between this expression and the expression for the energy stored by a capacitor with 

capacitance C and charge q; namely, 

 

 

(The variable i
2
 corresponds to q2, and the constant L corresponds to 1/C) 

 

 

  



30-11   Energy Density of a Magnetic Field 

 

Consider a length l near the middle of a long solenoid of cross-sectional area A carrying current 

i; the volume associated with this length is Al. The energy UB stored by the length l of the 

solenoid must lie entirely within this volume because the magnetic field outside such a solenoid 

is approximately zero. 

Moreover, the stored energy must be uniformly distributed within the solenoid because the 

magnetic field is (approximately) uniform everywhere inside. 

Thus, the energy stored per unit volume of the field is 

 

 

Here L is the inductance of length l of the solenoid. 

Substituting for L/l =        

 

where n is the number of turns per unit length. From Eq. (B = μᵒin) we can write this energy 

density as 

 

This equation gives the density of stored energy at any point where the magnitude of the 

magnetic field is B. Even though we derived it by considering the special case of a solenoid, Eq. 

3 holds for all magnetic fields, no matter how they are generated. The equation is comparable to 

Eq. 25-25, 



  

which gives the energy density (in a vacuum) at any point in an electric field. Note that both uB 

and uE are proportional to the square of the appropriate field magnitude, B or E.  

 

  



30-12  Mutual Induction 

We saw earlier that if two coils are close together, a steady current i in one coil will set up a 

magnetic flux ɸ through the other coil (linking the other coil). If we change i with time, an emf ɛ 

given by Faraday’s law appears in the second coil; we called this process induction. 

 We could better have called it mutual induction, to suggest the mutual interaction of the two 

coils and to distinguish it from self-induction, in which only one coil is involved. 

Let us look a little more quantitatively at mutual induction. Figure 30-19a shows two circular 

close-packed coils near each other and sharing a common central axis. With the variable resistor 

set at a particular resistance R, the battery produces a steady current i1 in coil 1.This current 

creates a magnetic field represented by the lines B1 of in the figure. Coil 2 is connected to a 

sensitive meter but contains no battery; a magnetic flux ɸ21 (the flux through coil 2 associated 

with the current in coil 1) links the N2 turns of coil 2. 

 



 

We define the mutual inductance M21 of coil 2 with respect to coil 1 as 

 

which has the same form as 

 

Eq. 1 can be written as  

 

If we cause i1 to vary with time by varying R, we have 

 

 

The right side of this equation is, according to Faraday’s law, just the magnitude of the emf ɛ2 

appearing in coil 2 due to the changing current in coil 1.Thus, with a minus sign to indicate 

direction, 

 

which you should compare with Eq. 30-35 for self-induction (ɛ = -L di/dt). 

Let us now interchange the roles of coils 1 and 2, as in Fig. 30-19b; that is, we set up a current i2 

in coil 2 by means of a battery, and this produces a magnetic flux ɸ12 that links coil 1.If we 

change i2 with time by varying R, we then have, by the argument given above, 

 

Thus, we see that the emf induced in either coil is proportional to the rate of change of current in 

the other coil. The proportionality constants M21 and M12 seem to be different. We assert, 



without proof, that they are in fact the same so that no subscripts are needed. (This conclusion is 

true but is in no way obvious.) Thus, we have  

 

 


